Самоделки своими руками

Самые лучшие полезные самоделки рунета! DIY, handmade, фото, чертежи, инструкции, руководства, книги, мастер-классы, видео.

Самоделки добавить в закладки

   Добавить в Закладки!


Добавить виджет Евросамоделки на Яндекс


5 новых самоделок!
05.12.2016
Две гаражные самоделки: мобильный лежак под машину и складной ящик для инструментов
04.12.2016
Самодельное устройство управления насосом позволит автоматизировать работу дачного насоса, с помощью которого вода поступает в емкость (душ, система полива и т.п.)
04.12.2016
Как соорудить крутой фальш-камин, который не отличить от настоящего
04.12.2016
Как мы строили новую баньку 3х6 (Пошаговый фотоотчет, 25 фото)
27.11.2016
Проект очень качественной акустической системы для изготовления своими руками, который может повторить меломан-радиолюбитель
Последние комментарии

Новые дизайнерские идеи
01.09.2016
Классный игровой домик для детей. Прекрасная идея для дачного участка
01.09.2016
Отличная лоджия за 800 у.е. (дизайнерская идея, фото, материалы)
01.09.2016
Из лоджии получили уютную детскую комнату (фото, идея дизайна)
Новые видео-самоделки
12.11.2016
Хорошая видеоподборка по самодельным ленточным пилам
31.08.2016
7 интересных приспособлений для строительства (видео)

1. Приспособление для равномерного распределения раствора.
2. Приспособление для нанесения плиточного клея на кафель.
3. Приспособление-шаблон для имитации кирпичной кладки.
4. Приспособление для просеивания песка.
5. Приспособление для кладки кирпичей.
6. Приспособление для переноса кирпичей.
7. Приспособления для сверхбыстрого нанесения штукатурки при помощи сжатого воздуха.
06.05.2016
Видоподборка из 12 видеороликов о том, как сделать самодельнй наждак из двигателя от стирльной машины
09.08.2015
Трансформатор П-600 на эффекте бегущей волны
05.08.2015
Самоделки из двигателя от стиральной машины:

1. Как подключить двигатель от старой стиральной машины через конденсатор или без него
2. Самодельный наждак из двигателя стиральной машинки
3. Самодельный генератор из двигателя от стиральной машины
4. Подключение и регулировка оборотов коллекторного двигателя от стиральной машины-автомат
5. Гончарный круг из стиральной машины
6. Токарный станок из стиральной машины автомат
7. Дровокол с двигателем от стиральной машины
8. Самодельная бетономешалка


Пусковое устройство для двигателя




Пусковое устройство для двигателя

 
              Пусковое устройство для двигателя

                           

 

Надежный запуск двигателя легкового автомобиля зимой иногда может превратиться в проблему. Особенно актуален этот вопрос для мощной автотракторной техники сельхозпредприятий, дорожно–коммунальных служб, которые эксплуатируют её в условиях безгаражного хранения. Этого не произойдёт, если под рукой будет электронный помощник, изготовить который может радиолюбитель средней квалификации.

Пусковое устройство такого типа было изготовлено по рекомендациям, описанным в статье "Пусковое устройство" (И.П. Шелестов. Радиолюбителям полезные схемы. Книга 1. М.: "Солон" 1998 г. с.95 – 96). Первые испытания показали, что называть его пусковым устройством можно с известной долей условности. Оно способно работать лишь в режиме "прикуривателя", т.е. совместно с аккумуляторной батареей автомобиля, а потому правильнее было бы называть его зарядно–пусковым устройством. При низких температурах окружающего воздуха, запуск двигателя приходилось осуществлять в два этапа:

- подзарядка аккумуляторной батареи в течение 10-20 секунд;
- совместная "раскрутка" двигателя.

Приемлемая частота вращения стартера сохранялась 3-5 секунд, а затем резко снижалась. Если двигатель не завелся с первой попытки, приходилось повторять всё сначала. Итак, несколько раз. Эта процедура не только утомительна, но и не желательна по двум причинам:
ведёт к перегреву стартера и его повышенному износу;
снижает срок службы аккумулятора (зимой стартерные токи легковых автомобилей достигают 250 А. Они вызывают деформацию аккумуляторных пластин, отслоение активного вещества и т.д.).

И дело здесь не только в том, что аккумуляторная батарея "не первой свежести". Как известно из литературы (Н.М. Ильин, Ю.Л. Тимофеев, В.Я. Ваняев. Электрооборудование автомобилей. М.: Транспорт, 1982 г.), разрядная ёмкость зависит не только от срока службы аккумуляторов, но и температуры электролита. Номинальная ёмкость гарантируется ТУ при температуре электролита +25°С. С понижением температуры увеличивается вязкость электролита, что приводит к уменьшению разрядной ёмкости примерно на 1% на каждый градус понижения температуры. Таким образом, даже новая аккумуляторная батарея зимой значительно теряет свои "пусковые" возможности.

 

Избежать указанных недостатков можно только в том случае, если мощность пускового устройства будет достаточной для самостоятельного (без помощи аккумулятора) запуска холодного автомобиля. Это позволит также существенно продлить активный срок службы аккумуляторной батареи.

 

Попробуем, примерно, оценить параметры такого пускового устройства. Как известно из литературы [1], в стартерном режиме рабочий ток аккумулятора:

Iр = 3 × С20, А,

где С20 - номинальная ёмкость батареи (А·ч). Напряжение в стартерном режиме на каждом аккумуляторе должно быть не ниже 1,75 В. Т.о. для 12- вольтовой батареи:

Uр = 6 × 1, 75 В = 10,5 В,

где Uр – минимальное рабочее напряжение аккумуляторной батареи в стартерном режиме, В.

 

Отсюда мощность, подводимая к стартеру:

Рст = Uр × Iр, Вт.

Например, если на легковом автомобиле установлена аккумуляторная батарея 6 СТ–60, то мощность, подводимая к стартеру, составит:

Рст = 10,5 · 3 · 60= 1890 (Вт).

Исключением из этого правила является аккумуляторная батарея 6 СТ–55, стартерный ток которой составляет: Iр = 255 А, а мощность подводимая к стартеру может составить:

Рст = 10,5 В · 255 А=2677,5 Вт.

Используя данные таблицы 1, можно рассчитать мощность, подводимую к стартеру любого автомобиля. При этой мощности обеспечивается такая частота вращения коленчатого вала (40–50 об/мин – для карбюраторных двигателей и 80–120 об/мин – для дизельных), которая гарантирует надежный запуск двигателя.

Таблица № 1

 

 N/N 

 Тип стартера 

 Номинальная мощность, кВт 

 Номинальное напряжение, В 

 Примняется на двигателях 

 Тип аккумуляторной батареи 

 Мощность трансформатора пускового устройства, кВт 

1

СТ 230А,
СТ 230Б,
СТ230К.

1,03

12

Автомобили
"Волга",
ГАЗ-53,
ГАЗ-66,
ЗИЛ-130


6СТ-60
6СТ-75
6СТ-75
6СТ-90


4
4,5
4,5
5

2

СТ 221

1,25

12

"ВАЗ"

6СТ-55

4

3

СТ 117А

1,18

12

"Москвич"

6СТ-55

4

4

СТ 222А

2,2

12

Тракторы
Т-16,
Т-25,
Т-30

2×6СТ-150

6

5

СТ 142

7,73

24

Автомобили
"КАМАЗ",
"МАЗ",
"КРАЗ",
"ЗИЛ-133 ГЯ"


2×6СТ-190

16-20

6

СТ 103А-01

8,2

24

Тракторы
"Кировец",
(К-700,
К-701)

2×6СТ-190

16-20

 

Сопоставляя данные таблицы № 1 и расчеты, приведённые выше, можно сделать несколько выводов:

- для большинства легковых автомобилей, реальная мощность, подводимая к стартеру, превышает его номинальную (паспортную) мощность в 2-2,5 раза и составляет:

1900 ≤ Рст ≤ 2700 [Вт];

- для грузовых автомобилей с карбюраторными двигателями этот показатель может быть ещё выше:

2400 ≤ Рст ≤ 3310 [Вт];

- для автомобилей с дизельным двигателем:

Рст = 2 · 10,5 · 570 = 11970 [Вт],

(у них две батареи 6 СТ - 190 включены последовательно).

При расчете понижающего трансформатора пускового устройства необходимо учесть потери на выпрямительном блоке, подводящих проводах, окисленных контактных поверхностях соединительных клещен и выводах стартера. Как показал опыт, мощность понижающего трансформатора пускового устройства для легкового автомобиля должна быть не менее Ртр = 4 кВт.

 

За основу была взята схема, приведённая в [2], но с более мощным трансформатором Т1. (см рис. 1).


Пусковое устройство для двигателя

Рис.1 Схема однофазного пускового устройства.


В авторском варианте понижающий трансформатор был изготовлен на тороидальном сердечнике от статора сгоревшего асинхронного электродвигателя мощностью 5 кВт. Его данные выглядят следующим образом:

Scт = 27 см2, Scт = а × в (Scт – площадь сечения магнитопровода, см2)

(см рис. 2).

Пусковое устройство для двигателя


Рис.2 а,б Магнитопровод


Количество витков на 1 В рабочего напряжения рассчитывалось по формуле:

Т = 30/Sст

Число витков первичной обмотки трансформатора составило:

W1=220 · Т=220 · 30/27 = 244;

вторичной обмотки:

W2 = W3 = 16 · Т= 16 · 30/27 = 18.

Первичная обмотка намотана проводом ПЭТВ Ø 2,12 мм, вторичная – алюминиевая шина сечением 36 мм2. Выключатель SА1 типа АЕ – 1031 (с встроенной тепловой защитой) на ток 25 А. Диоды VD1, VD2 типа Д161–250.

 

Амплитуда магнитной индукции в сердечнике трансформатора Вм = 1,7 Тл. Ток холостого хода при таких значениях Вм достигает значений Iхх = 3,5 А, что снижает КПД трансформатора. Однако здесь необходимо принять во внимание следующее обстоятельство. Рабочий ток в первичной обмотке трансформатора I1 в момент запуска может достигать значений 18–20 А, вызывая падение напряжения в подводящих проводах осветительной сети на 15–20 В. Таким образом, к первичной обмотке трансформатора будет приложено не 220 В, а 200 В. Это снижает величину Вм и ток холостого хода, что увеличивает КПД трансформатора в момент пуска.

 

Для желающих самостоятельно рассчитать параметры понижающего трансформатора можно воспользоваться методиками, изложенными в [2], [3].

 

Несколько советов о подготовке тороидального сердечника. Статор, вышедшего из строя электродвигателя освобождают от остатков обмотки. С помощью остро заточенного зубила и молотка вырубывают зубцы статора. Сделать это не сложно, т.к. железо мягкое, но нужно воспользоваться защитными очками и рукавицами. Затем из металлического прутка Ø 7–8 мм готовят две П–образные скобы, которыми сердечник трансформатора будет крепиться к рамке–основанию. На обоих концах скоб нарезают резьбу под гайки М6. Из металлической ленты, толщиной 3–4 мм и шириной 18–20 мм, согнутой П–образно, готовят рукоятку трансформатора. Края П–образной пластины дополнительно изгибают навстречу друг другу, получая "язычки" длинной 5–8 см, к которым будет крепиться деревянная рукоятка. С этой целью в "язычках" просверливают отверстия Ø 7 мм. Две скобы и металлическую часть рукоятки обматывают слоем ткани, пропитанной эпоксидной смолой и приклеивают к внутренней части тороида: рукоятку вверху, скобы внизу на некото-ром расстоянии друг от друга. Весь сердечник также покрывают одним–двумя слоями ткани, пропитанной эпоксидной смолой. После высыхания эпоксидной смолы, приступают к намотке обмоток. Первичную обмотку мотают первой, равномерно распределяя по всему периметру. После выполнения первичной обмотки, трансформатор включают в сеть и замеряют ток холостого хода, который не должен превышать 3,5 А. Необходимо помнить, что при Вм = 1,7 Тл сердечник близок к насыщению, а потому, даже незначительное изменение числа витков будет приводить к существенному изменению тока Iхх первичной обмотки.

 

Перед намоткой вторичной обмотки в металлической части рукоятки сбоку сверлят отверстие под болт с резьбой М12, который будет служить выводом от средней точки обмотки и одновременно "плюсовой" клеммой. Показанное на схеме соединение выпрямительных диодов позволяет использовать металлические элементы рамки- основания пускового устройства не только для крепления диодов, но и качестве теплоотвода без диэлектрических прокладок.

 

Выводы вторичных полуобмоток соединят с "плюсовой" клеммой, витки равномерно распределяют по всему периметру сердечника. При укладке используют деревянный молоток.

 

Далее с помощью сварки готовят рамку–основание. Для этого используют металлические прутки Ø 10–12 мм. С одной стороны рамки на алюминиевой или медной пластине толщиной 3–4 мм крепят выпрямительные диоды. Здесь же сверлят отверстие под болт М12, который будет служить "минусом" устройства. На другой стороне рамки приваривают отрезок угольника и крепят к нему выключатель SА1.

 

Теперь о проводах, соединяющих пусковое устройство со стартером. Любая небрежность в их изготовлении может "свести на нет" все ваши усилия. Покажем это на конкретном примере. Пусть сопротивление Rпр всего соединительного тракта от выпрямителя до стартера будет равно: Rпр=0,01 Ом, тогда при токе Iр=250 А падение напряжения на проводах составит:

Uпр=Iр · Rпр = 250 А = 0,01 Ом = 2,5 В;

мощность потерь на проводах:

Рпр=Uпр · Iр = 625 Вт.

 

В результате к стартеру в рабочем режиме будет подведено напряжение не 14 В, а 11,5 В, что, конечно же, нежелательно. Следовательно, длина соединительных проводов должна быть как можно меньше ( l ≤ 1,5 м ), а площадь поперечного сечения, как можно больше (Sп ≥ 100 мм2). Провода должны быть многожильными медными в резиновой изоляции. Для удобства, соединение со стартером делается разъёмным с помощью клещен или мощных зажимов, применяемых в качестве держателей электродов для бытовых сварочных аппаратов. Общий вид однофазного пускового устройства показан на рис.3.

 

Пусковое устройство для двигателя

Рис.3 Общий вид однофазного пускового устройства.


Изложенная методика расчета пускового устройства является универсальной и применима к двигателям любой мощности. Продемонстрируем это на примере стартера СТ–222 А, применяемого на тракторах Т–16, Т–25, Т–30 Владимирского тракторного завода.

Основные сведения о стартере СТ-222 А:

номинальное напряжение – 12 В;

номинальная мощность – 2,2 кВт;

тип аккумуляторной батареи – 2 ×3СТ–150.

 

Значит:

Iр=3 · С20= 3 · 150 А = 450 А,

Мощность, подводимая к стартеру составит:

Рст = 10,5 В · 450 А = 4725 Вт.

Учитывая мощность потерь:

Рп = 1–1,3 кВт.

Мощность трансформатора пускового устройства:

Ртр = Рст + Рп = 6 кВт.

Сечение магнитопровода Scт = 46–50 см2. Плотность тока в обмотках берут равной:

j = 3 – 5 А/мм2.

Кратковременный режим работы пускового устройства (5–10 секунд) допускает его использование в однофазных сетях. Для более мощных стартеров трансформатор пускового устройства должен быть трёхфазным. Расскажем об особенностях его конструкции на примере пускового устройства для мощного дизельного трактора "Кировец" (К–700, К–701). Его стартер СТ–103А–01 имеет номинальную мощность 8,2 кВт при номинальном напряжении 24 В. Мощность трансформатора пускового устройства (с учётом потерь) составит:

Ртр = 16 – 20 кВт.

Упрощенный расчёт трёхфазного трансформатора производят с учётом рекомендаций, изложенных в [3]. Если есть возможность, можно воспользоваться промышленными понижающими трансформаторами типа ТСПК–20А, ТМОБ–63 и др., подключаемыми к трёхфазной сети напряжением 380/220 В и вторичным напряжением 36 В. Такие трансформаторы применяются для электрообогрева полов, помещений в животноводстве, свиноводстве и т.д. Схема пускового устройства на трёхфазном трансформаторе выглядит следующим образом (см рис.4).

 

Пусковое устройство для двигателя

Рис.4 Пусковое устройство на трёхфазном трансформаторе.



 МП - магнитный пускатель типа ПМЛ–4000, ПМА–4000 или подобные им для коммутации устройств мощностью 20 кВт. Пусковая кнопка SВ1 типа КУ–121–1, КУ–122–1М и т.д.

 

Здесь применён трёхфазный однополупериодный выпрямитель, позволяющий получить напряжение холостого хода 36 В. Его повышенное значение объясняется применением более длинных кабелей, соединяющих пусковое устройство со стартером (для крупногабаритной техники длина кабелей достигает 4 м). Применение трёхфазного трансформатора даёт более широкие возможности для получения требуемого напряжения пускового устройства. Его значение можно изменять, включая обмотки "звездой", "треугольником", применять однополупериодное или двухполупериодное (схема Ларионова) выпрямление.

 

В заключение несколько общих советов и рекомендаций:

 

- Применение тороидальных трансформаторов для однофазных пусковых уст-ройств не обязательно и продиктовано их лучшими массово-габаритными показателями. Вместе с тем, технология их изготовления наиболее трудоёмка.

- Расчёт трансформатора пускового устройства имеет некоторые особенности. Например, расчёт количества витков на 1 В рабочего напряжения по формуле: Т=30/Sст , объясняется желанием "выдавить" из магнитопровода максимум возможного в ущерб экономичности. Это оправдано его кратковременным (5–10 секунд) режимом работы. Если габариты не играют решающей роли, можно использовать более щадящий режим, проведя расчёт по формуле: Т=35/Sст . Сечение магнитопровода берут на 25–30 % больше.

- Мощность, которую можно "снять" с имеющегося тороидального сердечника, примерно равна мощности трёхфазного асинхронного электродвигателя, из которого изготовлен этот сердечник. Если мощность двигателя не известна, то её можно приблизительно рассчитать по формуле:

Рдв = Ѕст × Ѕок,

где Рдв – мощность двигателя, Вт; Ѕст - площадь сечения магнитопровода, см2 Ѕст = а×в Ѕок – площадь окна магнитопровода, см2 (см рис.2)

Ѕок = 0,785 · D2

 

- Сердечник трансформатора к рамке-основанию крепится двумя П-образными скобами. С помощью изолирующих щайб необходимо избежать появления ко-роткозамкнутого витка, образованного скобой с рамкой.

- Учитывая, что напряжение холостого хода в трёхфазном пусковом устройстве выше 28 В, пуск двигателя производится в следующей последовательности:

1. Соединить клещи пускового устройства с выводами стартера.

2. Водитель включает стартер.

3.  Помощник нажимает на пусковую кнопку ЅВ1 и после устойчивой работы двигателя сразу её отпускает.

 

- При использовании мощного пускового устройства в стационарном варианте по требованиям ТБ его необходимо заземлить. Рукоятки соединительных клещей должны быть в резиновой изоляции. Во избежание путаницы "плюсовую" клещ-ню желательно пометить, например, красной изолентой.

- При пуске аккумуляторную батарею можно и не отключать от стартера. В этом случае клещи присоединяют к соответствующим выводам аккумулятора. Чтобы избежать перезарядки аккумулятора, пусковое устройство после запуска двигате-ля отключают.

- Для уменьшения магнитного рассеяния, вторичные обмотки трансформатора лучше наматывать первыми на сердечник, а затем наматывают первичную обмотку.



Литература:


Н.М. Ильин, Ю.Л. Тимофеев, В.Я. Ваняев. Электрооборудование автомобилей. М.: Транспорт, 1982 г.
И.П. Шелестов. Радиолюбителям полезные схемы. Книга 1, М.: "Солон" 1998г.
И. Никофоров. Упрощённый расчёт сетевого трансформатора. Радио, 2000, № 10,с. 39.
Тракторы "Кировец", К-701, К-700 А. Техническое описание и инструкция по эксплуатации. М.: Трактороэкспорт.
В. Мотузас. Электропускач. Сельский механизатор, 1988, № 4, с. 23-24.

 

 

Сокращенный вариант статьи опубликован в журнале "Радио" 2003, № 11, с.44 – 94.

http://cm001.narod.ru/index/publik/svarka.html






Оценить самоделку, мастер-класс, идею. Комментарии


Вверх
Вниз
Лучшие самоделки месяца